


WHO WE ARE WHO AM I?

SHLOMI LEVIN
Co-founder & CTO
• Formerly, Senior Technology Leader at 

Cyvera (acquired by Palo Alto Networks) 
and at Trusteer (acquired by IBM)

• Officer & Research Squad Leader in 
classified elite cyber unit in the Israeli 
Intelligence Corps



2

Why It’s
Important

AGENDA 1

Exploits & Exploitation
Techniques 

3

The Evolution of
Exploitation Techniques

4

Evasion Techniques

5

Our Approach &
Offering



Exploits & Exploitation
Techniques

1



EXPLOITS & 
EXPLOITATION
TECHNIQUES

FIRST THINGS FIRST: 
DEFINITIONS 

Exploit Exploitation Technique

• Code that leverages a 
software bug (vulnerability) 
to infect a system

• In simple words: the trigger 
that enables the attacker to 
deliver the malware

• A limited set of techniques 
used to conduct an exploit

• Typically developed in 
academia

• Exploitation techniques are 
the technical actors behind 
advanced threats



EXPLOITS & 
EXPLOITATION
TECHNIQUES

FIRST THINGS FIRST: 
DEFINITIONS (CONT’D)

Zero-day N-day

• A cyber attack leveraging 
software bugs that are 
completely unknown and 
have no patch

• A cyber attack leveraging 
software bugs that are known 
(Usually published by 
cybersecurity companies)

• Altered signatures prevent 
detection



EXPLOITS & 
EXPLOITATION
TECHNIQUES

EXPLOITS ARE THE DELIVERY 
VEHICLE FOR MALWARE

• Exploitation is a deterministic act that happens 
earlier in the kill chain, pre-malware release.



EXPLOITS & 
EXPLOITATION
TECHNIQUES

IT’S A NUMBER GAME. 
IS IT?

• In advanced attacks exploits are 
the real enemy. 

• While there were 670 MM new 
malware variants in 2017 (+88% 
YoY) (1), there are only a limited 
number of exploits.

Note:
1. Symantec ISTR March 2018



EXPLOITS & 
EXPLOITATION
TECHNIQUES

KEY MILESTONES IN THE 
EXPLOIT’S EVOLUTION



Why It’s 
Important

2



WHY IT’S 
IMPORTANT

THE THREAT LANDSCAPE:
ADVANCED THREATS OVERVIEW

• Transferred wither by 
files or links

• Attack techniques 
include: Heap Spray, 
ROP, COP and more

Memory Corruption Logical Bugs / Droppers Payload-less Attacks

• Exploiting logical bugs
in a software and/or 
features for malicious 
purposes

• E.g. mouse-hovering, 
DEE

• Attacks that don’t 
include any file or links

• Includes BEC & ATO 
attacks



WHY IT’S 
IMPORTANT

EXAMPLE #1:
INTERNET EXPLORER VULNERABILITY

Sources: Trend Micro & Security Affairs

Attack Overview
• The attacker: Darkhotel, a North 

Korea-based APT group 

• The vulnerability: CVE-2018-
8373, a Zero-day in Internet 
Explorer 9, 10, and 11

• The flaw could be exploited by 
remote attackers to take control of 
the systems by tricking victims 
into viewing a specially crafted 
website through Internet Explorer.

Analysis of the exploit code revealed it shared the 
obfuscation technique implemented for another flaw 
(CVE-2018-8174)



WHY IT’S 
IMPORTANT

EXAMPLE #2:
3 MS OFFICE’S EPS ZERO-DAYS (CVE-0261/0262/0263)

Source: FireEye

Attack Overview
• The attackers:
• Turla – a Russian cyber 

espionage APT group
• APT28 – a Russian cyber 

espionage APT group
• A new unknown financially 

motivated actor 

• The targets: European diplomatic 
and military entities and regional 
and global banks with offices in 
the Middle East.

• The exploits leveraged 3 
vulnerabilities in Microsoft Office 
Encapsulated PostScript (EPS)



WHY IT’S 
IMPORTANT

EXAMPLE #3:
SHARED DRIVE ATTACK

Source: CrowdStrike

Attack Overview
• The attacker: MUSTANG 

PANDA, a China-based hacking 
group

• The target: Mongolia-based 
victims

• The attack involved the use of 
shared malware.

• The group used a series of 
redirections and file-less, 
malicious implementations of 
legitimate tools to gain access to 
the targeted systems.



WHY IT’S 
IMPORTANT

EXAMPLE #3:
SHARED DRIVE ATTACK (CONT’D)

The Attack Chain

The drive link 
retrieves a zip file 

from the folder

Obfuscated link to 
Google Drive (goo.gl)

The zip file contained 
a .lnk file obfuscated 

as a .pdf file

The .lnk file redirects the user to a 
.wsc file hosted on a micro-blogging 

page controlled by the attacker

The file uses VBScript to 
retrieve a decoy PDF file 
and a PowerShell script

The attacker runs the 
malware and gains control 

on the target

Source: CrowdStrike



The Evolution of
Exploitation Techniques

3



THE EVOLUTION OF
EXPLOITATION 
TECHNIQUES

THE 90’S: CODE INJECTION 
ATTACKS

• “RET” opcode is tricked and 
returns to malicious code.

• Injected to the software by the 
attacker.

• These techniques were very 
successful for a time as there 
were no defensive measure in 
place.



THE EVOLUTION OF
EXPLOITATION 
TECHNIQUES

INTEL’S NX (NO-
EXECUTE) BIT

• Hardware protection prevents 
attackers from injecting and 
executing malicious code from 
the stack.

• Life got hard for attackers for 6 
years as the new Intel CPU’s 
were widespread.



THE 2000’S: CODE REUSE 
ATTACKS

• If injected code can’t be 
executed use EXISTING code 
instead!

• ROP was introduced in 2007 to 
bypass NX Bit. With ROP, an 
attacker chains small pieces from 
the normal code (gadgets) – to 
construct a new malicious code.

• For 10 years there’s been no 
protection against Code-Reuse 
Attacks such as ROP, resulting in 
an exponential increase in 
exploits.

THE EVOLUTION OF
EXPLOITATION 
TECHNIQUES



INTEL CONTROL-FLOW 
ENFORCEMENT TECHNOLOGY (CET)

• Hardware protection that 
provides the following 
capabilities to defend against 
code reuse attacks:

1 Shadow Stack
Return address protection to 
defend against Return 
Oriented Programming.

2 Shadow Stack
Return address protection to 
defend against Return 
Oriented Programming.

1

2

The (1st) problem: to be released only in 
2020 (TBD)

THE EVOLUTION OF
EXPLOITATION 
TECHNIQUES



AND MORE BAD NEWS... ADVANCED 
CODE RE-USE ATTACKS

• If small code fragments can’t 
be executed use LEGITIMATE
code such as functions and 
virtual functions.

• Techniques such as LOP, DOP
and COOP essentially setup a 
loop gadget to invoke a series 
of legitimate functions to 
carry out malicious 
computations.

THE EVOLUTION OF
EXPLOITATION 
TECHNIQUES



Evasion Techniques
4



EVASION 
TECHNIQUES

EVASION TECHNIQUES: HOW 
HACKERS BYPASS SANDBOXES

2

1

Embedding the Payloads
• Deep, sophisticated packaging
• Clicked when triggered

2

Detecting the Existence of a Sandbox
• The code runs differently in the 

virtualized environment

3

Exploiting the Sandbox’s vulnerabilities 
• Cutting the hooks
• Scale and sizes of files



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)

Packaging
• Attackers simply conceal the 

malicious payload by deeply 
embed them within other files or 
links, taking advantage with the 
scale problem of sandboxes.

• This evasion is pretty easy and 
does not require any advanced 
hacking capabilities.

1

Based on attack caught in Perception Point’s system



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)

Sleepers
• Since many sandboxes have limit 

time in which they test a 
file/link, many attackers insert a 
sleeper of several minutes to 
bypass the defense layers.

• Again, this technique requires 
minimal hacking capabilities.

2



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)

Detecting The “Artificiality” of 
The Environment
• Detecting that the environment 

is not real in the sense a human 
does not use it.

• Examples include: checking 
screen resolution, drivers, 
memory size, system uptime, 
cookies, desktop icons, 
languages, time zones, and 
more.

3

Sources: VMRay, Perception Point



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)

Detecting Virtualization / 
Hypervisor
• Detecting technical artifacts that 

exist due to the lack of full 
hardware support for virtualization.

• Examples include: detecting 
artifacts of popular VM hypervisors, 
or detecting generic hypervisor 
artifact.

• This type of attack usually takes 
place only after the exploit is 
being run, i.e. as part of the 
malware execution.

4

Sources: VMRay, Perception Point



EVASION 
TECHNIQUES

EVASION TECHNIQUES
(CONT’D)

Detecting Sandbox Artifacts
• Detecting the sandbox itself (vs. 

the hypervisor).

• In this approach, the hacker can 
utilize the fact that a sandbox 
has hooks – a layer capturing 
communication between 
processes, drivers and the OS.

• Again, this type of attack usually 
takes place only after the 
exploit is being run, i.e. as part 
of the malware execution.

5

Sources: VMRay, Perception Point



Our Approach &
Offering

5



OUR APPROACH &
OFFERING

ADVANCED EMAIL & SHARED DRIVES 
PROTECTION



OUR APPROACH &
OFFERING

THE HAPTM: FIRST-EVER HARDWARE ASSISTED PLATFORM 
BLOCKS ZERO-DAY AND N-DAY EXPLOITS

Key Goal:
Provide real-time prevention by intercepting 
malicious documents and URLs that 
leverage:
- Zero-day vulnerabilities
- N-day vulnerabilities targeting 

unpatched software updates
- Never-seen-before malicious 

document with various scripts 
(e.g. Word macros)

How We Address It:
Software algorithms use CPU level data to 
access the entire execution flow, right from 
the processor. 

Deterministically intercepts exploit 
techniques pre-malware release.



OUR APPROACH &
OFFERING

THE HAPTM: HARDWARE 
VISIBILITY

• Leverage Intel PT (Processor Trace), to 
gain access to the full execution flow of 
an application.

• Custom built hypervisor used as a bridge 
between the hardware and the virtual 
machines (VMs) that detonated the 
files/URLs.

• When a file is running inside a VM, its full 
execution flow is recorded (creating a trace 
file) together with changes to virtual 
memory during execution.

• This together with the memory events is 
then fed to the scanners (detection 
algorithms) to detect malicious execution 
flow.



OUR APPROACH &
OFFERING

THE HAPTM: SOFTWARE 
AGILITY

1

CFG.
2

FFG.
3

Dropper
.

• Detects Zero-day & N-day 
memory corruption exploits
 

• Records the CPU while it 
processes the input (files and 
URLs) and identifies exploits 
by examining the entire 
execution flow – detecting 
any deviation from the 
normal flow of a program in 
order to deterministically 
identify malicious activity.

• Detects advanced 
techniques, such as exploits 
that are written to bypass 
common CFI algorithms.

• Proprietary semantic aware 
control flow graphs 
developed for each app 
identify deviations of the 
execution flow during 
runtime. 

• Detects logical bugs & 
Droppers in applications and 
malicious macros in office 
documents.
 

• Employs advanced heuristics-
based engine.



WHY IT’S 
IMPORTANT

THE THREAT LANDSCAPE: 
EXPLOIT TECHNIQUES

Exploit Technique Year

Stack Overwrite Return Address

Individual / Organization

Stack Overwrite Variables

Stack SEH Overwrite

Heap Spray

Stack Pivot

Return Oriented Programming (ROP)

Jump Oriented Programming (JOP)

Counterfeit Object-Oriented 
Programming (COOP)

Call Oriented Programming (COP)

Data Oriented Programming (DOP)

1996

2003

2004

n.a. (1)

2007

2014

2010

2015

2016

n.a.

Elias Levy (also known as Aleph One; a cyber security expert and blogger)

n.a.

David Litchfield (NGS Software)

SkyLined (a well-known blogger)

n.a. 

University of California, San Diego

North Carolina State University

Ruhr-Universitat Bochum & Technische Universität Darmstadt

University of California, Berkeley

National University of Singapore

Note:
1. This technique is highly connected to the ROP exploit.



OUR APPROACH &
OFFERING

EVERYDAY THREATS: 
OUR COVERAGE

1

Spam Filter
Receives the email & applies 
reputation and anti-spam filters to 
quickly flag an email as malicious.

2

Recursive Unpacker
Unpacks the email into smaller units (files and URLs) to 
identify hidden malicious attacks.
Further extracts embedded URLs and files (recursively) by 
unpacking files and following URLs. 

3

Threat Intelligence
Combines multiple threat 
intelligence sources with our 
internally developed engine 
that scans URLs and file in the 
wild to warn about potential 
or current attacks.

4

Phishing Engines
Combines best-in-class URL 
reputation engines and an in-
house image analysis engine 
to identify impersonation 
techniques and phishing 
attacks.

5

Static Signatures
Combines best-in-class 
signature based anti-virus 
engines to identify malicious
attacks. In addition, we've 
developed a tool that acts to 
identify highly complicated 
signatures.



Q&A



Thank You


