
Get Rid of Passwords With
This One Weird Trick
Understanding the Web Authentication API

Nick Steele
Senior R&D Engineer Senior R&D Engineer

James Barclay

@futureimperfect@codekaiju

Why are we talking about this?
● We’re Duo Labs

○ We’re the research group at Duo Security
○ Strong authentication on the internet is a hard problem
○ We research hard problems!

● We believe that the WebAuthn spec is a good solution to
passwordless authentication

● Solving this problem helps
pretty much everyone

Democratization of Security Is Key
● A rising tide lifts all ships
● Solving big security issues together rather than apart

○ Strengthens our community
○ Keeps us honest

● Focus should always be on helping the most users
● Be like Tron

A Brief History

“In the beginning the password was created.
 This has made a lot of people very angry and
 been widely regarded as a bad move.”

- Douglas Adams, sorta

81% of breaches leverage
either stolen and/or weak
passwords.

Source: 2017 Verizon Data Breach Investigations Report

http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/

“Kind of a nightmare...”
 - The guy who invented it

“Passwords Suck”
 - Most People

“Passwords Suck”
 - Most People

MFA

● Better than only 1st factor, but…

○ SecureID tokens can be stolen

○ HOTP and TOTP passwords can still be intercepted

○ Mobile device could be stolen, compromised

○ SIM could be cloned, emails could be compromised

○ SMS/email could be delayed/dropped, preventing login

Multi Factor Authentication

“Passwords Suck”
 - Most People

MFA

“Passwords Suck”
 - Most People

MFAU2F

Universal Second Factor
● Better than only 1st factor and traditional MFA but…

○ Requires physical token (usually)

○ Tokens can be expensive ($19 and up)

○ Hard to use (if even possible) on mobile devices

○ Isn’t supported natively in most browsers (not really universal…)

○ Hard to convince people to use it casually

“The average… user has over
107 accounts registered to one
email address… In 2020, the
average number of accounts per
internet user will be 207”
 - Dashlane, 2015

Meanwhile… in the year 2015
● Phones are becoming smarter

○ Most have a security module, like a TEE or SEP

■ Capable of handling complex cryptographic operations

○ Biometric authentication is common on these devices

○ 77% of Americans own a smartphone in 2017 (68% in 2015)

● FIDO drafts Universal Authentication Factor Spec

○ Spec describes a method for authenticating users via mobile device to web

applications using credential keys created by the phone, (and authenticated

with a biometric)

○ Not a lot of traction, but paved the way for…

Web Authentication

Web Authentication

WebAuthn

WebAuthn is…
“...an API enabling the creation and use of strong,
attested, scoped, public key-based credentials by
web applications, for the purpose of strongly
authenticating users.”

WebAuthn
“...[with WebAuthn] one or more public key
credentials, each scoped to a given Relying Party,
are created and stored on an authenticator by the
user agent in conjunction with the web application.”

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Strong Attested Scoped

Credentials

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Relying Party
● AKA The website that is requesting credentials
● Credentials for the Relying Party are bound by origin (scoped!)

○ Possible to use for subdomains, like sub.example.com , but not vice versa

● Cannot talk directly to the authenticator or (by default) identify the authenticator
● A breach of the Relying Party’s credential database would be moot

● Capable of creating strong and secure key pairs

● In the case of most mobile devices, includes a biometric

●

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Authenticators

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Why is WebAuthn important?
● Raises the bar for

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

What we did

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

FIDO2
● In March the FIDO Alliance introduced The FIDO2 Framework

○ WebAuthn + CTAP2

What Does That Even It Mean? Cont.

● Unique credentials per relying party (website)
● Can’t (easily) use WebAuthn to track users
● The browser/platform/user agent is responsible for

communicating with the authenticator
● We place some trust in authenticators

○ This trust is bootstrapped via attestation
● User communicates with the authenticator to authorize a

signing operation
○ No secrets are ever sent to the server

How WebAuthn Handles It

● User talks to device instead of directly to server
● Biometric, PIN, gesture, etc. are used to authorize the

signing operation
● Challenge is sent to the user by the relying party

○ Browser/platform asks the authenticator to perform the
signing operation

○ Trust is placed in the authenticator to protect keys,
(bootstrapped by attestation)

Show different authenticator possibilities,
(token, phone, laptop with TPM, etc.). maybe
show the login flow for UAF and talk about
how much better that is than typing
passwords. Platform (SGX, TEE, TPM, SEP)
vs. Cross-Platform authenticators, (U2F,
Biometrics)

Some Quick Background on Webauthn
 ● Spec draft started in May 2016 (Picked up Jan 2017)

● Strongly resembles the Universal Authentication Factor Spec
○ Some of the same authors as well
○ UAF is like WebAuthn but for native applications running on mobile devices.
○ Knowledge of this spec isn’t necessary for WebAuthn

● Includes contributors from Google, Microsoft, Nok Nok, and Mozilla
● FIDO Alliance have already given a workshop on implementing WebAuthn
● Yubico and Feitian (U2F and HSM manufacturers) are leading the pack in

providing support for the spec at the hardware.
○ WebAuthn will allow for native U2F support, currently only available in Chrome.

Implementation Roadmap
 ● W3C Candidate Recommendation coming soon

● In active development for Gecko, Blink, and Chakra
● Working behind a flag in

○ Chrome Canary
○ Firefox Nightly

● Slated for stable build release in
○ Chrome version 65 (now at 64)
○ Firefox version 60 (now at 58)

● If you work at Microsoft please give me access to the working Edge build
○ I know you have it and I will buy you a beer

● Apple is Apple
○ Probably making their own spec lol
○ Nah jk they’re part of the W3C

What We Did (Last Summer)
● Started researching the spec in September
● Wrote the first public working PoC of WebAuthn

○ webauthn.io

● Wrote another PoC of WebAuthn in Python
● Met with the authors and contributed to the spec
● Spread the WebAuthn gospel

https://webauthn.io/

Show and Tell

Now, Before We Get Technical...

● There are only two main WebAuthn operations, referred to as

ceremonies.
○ Ceremonies are an attempt to extend the concept of a network protocol to

include human interaction. What is out-of-band to a protocol is in-band to
a ceremony.

● These ceremonies involve 4 components:
○ A User
○ An Authenticator (Yubikey, Laptop TPM/TEE, Android TPM, etc)
○ The Client (Browser)
○ A Relying Party (The website or application the user is accessing)

■ The Relying Party can act through an Authentication Server
■ To keep it simple, we’ll concat the two.

Registration Ceremony

The user creates a strong credential key pair
verified and stored in part by the Relying Party

WebAuthn
Authenticators

● User Verification
○ Phone

■ iOS (Secure Enclave Processor)
■ Android (Trusted Execution Environment)

○ Laptop or Desktop
■ Windows Hello (Face or PIN to unlock keys stored in

TPM)
■ macOS (Touch ID to unlock keys stored in SEP)

○ External Authenticator, (e.g., FEITIAN BioPass)

● User Presence
○ U2F (only user presence is verified, UV bit set to 0)

If Not Passwords, Then What?

The prevalence of consumer security
hardware in recent years makes these
authenticators possible. Phones, laptops, and
various other consumer electronic devices
are shipping with TEEs/SEPs/TMPs/etc.
these days.

WebAuthn Flow

tbh this is
UAF, but
WebAuthn is
very (very)
similar.

How Does WebAuthn Work?
 ● Credential management API stuff

○ WebAuthn extends this

● Authentication Server
● Relying Party
● Authentication Server and RP can be the same

server or separate
● CTAP (Client to Authenticator Protocol)
● Attestation

○ Attestation types, (fido-u2f, none, tpm, SafetyNet, etc.).

WebAuthn Relying Party Operations
 ● Stuff stuff stuff

How does WebAuthn work for Non U2F?

● A User goes to a URL owned by a Relying Party to and is prompted to
create a new account. They hit “Register with your Phone”

● Their browser or an app opens on their phone with a prompt to Register
an account with the site that they are on.

● An account is created and they are let into the site.
● That’s it!
● Subsequent login requests (called Auths or Assertions) follow a similar

pattern.

But how does WebAuthn work?

● User Client, Relying Party, and Auth Server
○ The RP can also be the Auth Server

● There are two main Auth Ceremonies: Registration and Assertion
○ navigator.credentials.create({credentialOptions})
○ navigator.credentials.get({credentialID&Data})

● The information we receive back from these ceremonies is sent to the
Auth Server for validation

CTAP

● Specification for the application layer protocol for communication
between a client and external authenticators

○ Handles the requirements for transport over USB, NFC, and BLE

● Non-external authenticators don’t have to conform to CTAP.
○ Aims at standardizing the communication between a laptop and a smartphone.

● Not necessary to know CTAP to understand Webauthn

WebAuthn
Registration

Registration

● The RP provides the User Client with Credential Options for accessing
an authenticator via WebAuthn. The RP can request specific
authenticator traits (must support public key creation, must make
RSA/EC key type).

● We get a signed response from the authenticator that proves what type
of authenticator it is (in an Attestation Object) and we get a Public Key
(EC) specific to the Relying Party.

● We can verify facets of the authentication ceremony, like if the
authenticator proves User Presence AND User Verification.

● We store a Credential ID and The Public Key (and other relevant info).

Verifying the User

● The RP provides the User Client with Credential Options for accessing
an authenticator via WebAuthn. The RP can request specific
authenticator traits (must support public key creation, must make
RSA/EC key type).

● We get a signed response from the authenticator that proves what type
of authenticator it is (in an Attestation Object) and we get a Public Key
(EC) specific to the Relying Party.

● We can verify facets of the authentication ceremony, like if the
authenticator proves User Presence AND User Verification.

● We store a Credential ID and The Public Key (and other relevant info).

Verifying the Authenticator

● The RP provides the User Client with Credential Options for accessing
an authenticator via WebAuthn. The RP can request specific
authenticator traits (must support public key creation, must make
RSA/EC key type).

● We get a signed response from the authenticator that proves what type
of authenticator it is (in an Attestation Object) and we get a Public Key
(EC) specific to the Relying Party.

● We can verify facets of the authentication ceremony, like if the
authenticator proves User Presence AND User Verification.

● We store a Credential ID and The Public Key (and other relevant info).

WebAuthn
Assertion (Login)

Assertion

● Pass back the Credential ID we got during registration so the
Authenticator knows what credential we want.

○ We can look for specific authenticators and traits here as well (i.e. we want credentials
with only these IDs, and only receive them over bte, nfc, or usb, etc)

● We get a response back from the authenticator with some data and a
signature generated from that data and signed by the Credential’s
Private Key.

● We use the Public Key stored on Registration to verify that the signature
is valid and check that the data conforms to our Relying Party’s policies.

Asserting ownership of a Credential

● The RP provides the User Client with Credential Options for accessing
an authenticator via WebAuthn. The RP can request specific
authenticator traits (must support public key creation, must make
RSA/EC key type).

● We get a signed response from the authenticator that proves what type
of authenticator it is (in an Attestation Object) and we get a Public Key
(EC) specific to the Relying Party.

● We can verify facets of the authentication ceremony, like if the
authenticator proves User Presence AND User Verification.

● We store a Credential ID and The Public Key (and other relevant info).

WebAuthn Extensions
● Stuff stuff stuff

WebAuthn Shortcomings
● WebAuthn is only as strong as the weakest link

○ If email is your recovery mechanism when a user loses their
authenticator, that’s your bottleneck

● Multiple authenticators
○ For privacy reasons, an RP can’t know whether an

authenticator is present on a given device until asking

○ Do you prompt for a password, or for the user to log in with
their phone/laptop?

What’s next?

● Spec is in development for Chrome, Firefox, and Edge
○ Currently behind flags in

● Why is this more likely to catch on than FIDO’s UAF Standard?
○ Slightly lower barrier to entry - WebAuthn built in to browsers, but still requires

implementers to handle parsing/verifying the Client’s responses (Duo could help!)

○ More Vendors involved - Webauthn Spec is being authored by broader group. Android
SafetyNet planned support is a good signal. Google already uses the Credentials API to
create private and federated passwords

○ FIDO UAF Working group now references WebAuthn Work

github.com/duo-labs/py_webauthn

��Authn

WebAuthn Implementations

Author Repository Works?

Google webauthndemo Yes

FIDO webauthn-demo Yes

Duo Labs webauthn Yes

Duo Labs PyWebAuthn Yes

https://github.com/google/webauthndemo
https://github.com/fido-alliance/webauthn-demo
https://github.com/duo-labs/webauthn
https://github.com/duo-labs/py_webauthn

Key Take-Aways
● Passwords aren’t enough
● WebAuthn is a new standard for using public-key

credentials on the web, for the purpose of
authenticating users

● WebAuthn isn't perfect, but it's our current best
bet for replacing passwords on the web

● Major browser vendors and platform owners are
investing time/money/resources into WebAuthn,
so expect to hear more in the coming
months/years

Questions?
@codekaiju & @futureimperfect

Questions?

@codekaiju && @futureimperfect
nsteele@duo.com && jbarclay@duo.com
github.com/duo-labs/webauthn

