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Software development
Automation
DevOps
Consulting

Forensics
Pen testing
Malware reversing
Cryptography
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“Containers don’t contain.”
– Dan Walsh

“… but they sure are handy!”
– your developers
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GOALS

‣ What is a container?

‣ What are the security implications?

‣ How do I respond?
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ANATOMY
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ANATOMY

Image Registry
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ANATOMY
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KERNEL ESCAPES
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KERNEL ESCAPES

/usr/bin/foo 
/etc/foo.conf
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ephemeral

Foo ‣ Kernel design is open by default

- Therefore, trying to close holes

- Not everything is namespaced

‣ Kernel bugs → Container escapes
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MINDSET: CONTAINER ISOLATION

A container is not like a VM.

A container is like an application package
running in a slightly leaky sandbox.
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POLICY: OPERATING SYSTEMS

Use a container-focused host operating system.

* All brands are the property of their respective owners.

etc. etc.
(Google for more)

CoreOS Project Atomic Clear Linux
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OVER-PRIVILEGED CONTAINERS
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OVER-PRIVILEGED CONTAINERS

/usr/bin/foo 
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

ephemeral

Foo ‣ The --privileged option

‣ Exposing the Docker socket

‣ Over-reaching volume mounts

‣ Unlimited resource allocation
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MINDSET: LEAST PRIVILEGE

Don’t give a container what 
you wouldn’t give a regular application.

‣ Don’t run as root inside the container

‣ Drop as many privileges as you can

‣ Minimize what volume mounts expose

‣ Set resource constraints
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DAEMON DANGERS
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DAEMON DANGERS

‣ Underlying socket API

- No authorization required!

- Can be exposed to the network

‣ Run a container  ⇒  root on the host
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MINDSET: LEAST PRIVILEGE

Minimize access to the Docker daemon.

‣ Avoid exposing to the network

‣ Think of docker run like sudo
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IMAGE DISTRIBUTION
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IMAGE DISTRIBUTION

Image Registry

‣ Malicious source?

‣ Tampering in the registry?

‣ Tampering in transit?

‣ Tampering on the host system?
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POLICY: SIGNED ARTIFACTS

We already do this for regular software updates.

‣ Unfortunately, competing approaches

‣ Some implementations raise issues

- Docker Content Trust uses ToFU

‣ Consider running an in-house registry
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VULNERABLE DEPENDENCIES
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VULNERABLE DEPENDENCIES
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Foo ‣ In direct dependencies

‣ In the base image

‣ Cannot idiomatically patch at 
run-time
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MINDSET: RE-BUILD IMAGES

The old way was…

‣ Install a patch

‣ Restart the application

‣ Rebuild the image

‣ Re-deploy the container

The new way is…
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MINDSET: INVENTORY & SCANS

Simpler to scan images, not hosts.

(Run a private image registry.)

Asset tracking of where images are running.
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SUMMARY

‣ “Container’s don’t contain.”

‣ They’re not VM’s

‣ It helps if you use a container-focused host OS

‣ Don’t give a container what you wouldn’t give a regular host application

‣ Restrict access to the Docker daemon

‣ Verify image signatures / Have a plan for distribution

‣ Scan images for vulns & re-deploy from fresh images

‣ Use your own private image registry
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‣ API Server :  TLS + Auth + RBAC

‣ etcd: Mutual TLS auth

‣ kubelet: Disable anonymous auth

HARDENING BASICS

Read the docs:

Test your config:

“Securing a Cluster”



Istio
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IMPLICATIONS

‣ Separates data plane from 
control plane

‣ Pro: Mutual TLS everywhere

‣ Con: Single point of failure

Source: https://istio.io/docs/concepts/what-is-istio/
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Questions?


