
SECURING CONTAINERS
What’s so different?

Joel Lathrop
JOEL@DIDACTIC-SECURITY.COM

Triangle InfoSeCon | October 2018

Copyright © 2018 Didactic SecurityCopyright © 2018 Didactic Security

Software development
Automation
DevOps
Consulting

Forensics
Pen testing
Malware reversing
Cryptography

Copyright © 2018 Didactic Security

“Containers don’t contain.”
– Dan Walsh

“… but they sure are handy!”
– your developers

Copyright © 2018 Didactic Security

GOALS

‣ What is a container?

‣ What are the security implications?

‣ How do I respond?

Copyright © 2018 Didactic Security

Copyright © 2018 Didactic Security

ANATOMY

Copyright © 2018 Didactic Security

ANATOMY

Image Registry

Copyright © 2018 Didactic Security

ANATOMY

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Copyright © 2018 Didactic Security

ANATOMY

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Copyright © 2018 Didactic Security

ANATOMY

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

KERNEL ESCAPES

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

KERNEL ESCAPES

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

KERNEL ESCAPES

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

ephemeral

Foo ‣ Kernel design is open by default

- Therefore, trying to close holes

- Not everything is namespaced

‣ Kernel bugs → Container escapes

Copyright © 2018 Didactic Security

MINDSET: CONTAINER ISOLATION

A container is not like a VM.

A container is like an application package
running in a slightly leaky sandbox.

Copyright © 2018 Didactic Security

POLICY: OPERATING SYSTEMS

Use a container-focused host operating system.

* All brands are the property of their respective owners.

etc. etc.
(Google for more)

CoreOS Project Atomic Clear Linux

Copyright © 2018 Didactic Security

OVER-PRIVILEGED CONTAINERS

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

OVER-PRIVILEGED CONTAINERS

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

ephemeral

Foo ‣ The --privileged option

‣ Exposing the Docker socket

‣ Over-reaching volume mounts

‣ Unlimited resource allocation

Copyright © 2018 Didactic Security

MINDSET: LEAST PRIVILEGE

Don’t give a container what 
you wouldn’t give a regular application.

‣ Don’t run as root inside the container

‣ Drop as many privileges as you can

‣ Minimize what volume mounts expose

‣ Set resource constraints

Copyright © 2018 Didactic Security

DAEMON DANGERS

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

DAEMON DANGERS

‣ Underlying socket API

- No authorization required!

- Can be exposed to the network

‣ Run a container ⇒ root on the host

Copyright © 2018 Didactic Security

MINDSET: LEAST PRIVILEGE

Minimize access to the Docker daemon.

‣ Avoid exposing to the network

‣ Think of docker run like sudo

Copyright © 2018 Didactic Security

IMAGE DISTRIBUTION

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

IMAGE DISTRIBUTION

Image Registry

‣ Malicious source?

‣ Tampering in the registry?

‣ Tampering in transit?

‣ Tampering on the host system?

Copyright © 2018 Didactic Security

POLICY: SIGNED ARTIFACTS

We already do this for regular software updates.

‣ Unfortunately, competing approaches

‣ Some implementations raise issues

- Docker Content Trust uses ToFU

‣ Consider running an in-house registry

Copyright © 2018 Didactic Security

VULNERABLE DEPENDENCIES

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

Image Registry

ephemeral

Foo

Copyright © 2018 Didactic Security

VULNERABLE DEPENDENCIES

/usr/bin/foo
/etc/foo.conf

/usr/lib/libbar.so

<< Debian 9 image >>

ephemeral

Foo ‣ In direct dependencies

‣ In the base image

‣ Cannot idiomatically patch at
run-time

Copyright © 2018 Didactic Security

MINDSET: RE-BUILD IMAGES

The old way was…

‣ Install a patch

‣ Restart the application

‣ Rebuild the image

‣ Re-deploy the container

The new way is…

Copyright © 2018 Didactic Security

MINDSET: INVENTORY & SCANS

Simpler to scan images, not hosts.

(Run a private image registry.)

Asset tracking of where images are running.

Copyright © 2018 Didactic Security

SUMMARY

‣ “Container’s don’t contain.”

‣ They’re not VM’s

‣ It helps if you use a container-focused host OS

‣ Don’t give a container what you wouldn’t give a regular host application

‣ Restrict access to the Docker daemon

‣ Verify image signatures / Have a plan for distribution

‣ Scan images for vulns & re-deploy from fresh images

‣ Use your own private image registry

CC BY-SA: Wikipedia user Khtan66

Copyright © 2018 Didactic Security

CC BY-SA: Wikipedia user Khtan66

‣ API Server : TLS + Auth + RBAC

‣ etcd: Mutual TLS auth

‣ kubelet: Disable anonymous auth

HARDENING BASICS

Read the docs:

Test your config:

“Securing a Cluster”

Istio

Copyright © 2018 Didactic Security

IMPLICATIONS

‣ Separates data plane from
control plane

‣ Pro: Mutual TLS everywhere

‣ Con: Single point of failure

Source: https://istio.io/docs/concepts/what-is-istio/

Ap
p

De
�n

iti
on

 a
nd

 D
ev

el
op

m
en

t

Database

CNCF Incubating CNCF Sandbox

Streaming & Messaging

CNCF Incubating CNCF Sandbox

Source Code
Management

Application De�nition & Image
Build

CNCF Incubating CNCF Sandbox

Continuous Integration & Delivery

O
rc

he
st

ra
tio

n
&

M
an

ag
em

en
t

Scheduling &
Orchestration

CNCF Graduated

Coordination & Service
Discovery

CNCF Incubating

Remote Procedure Call

CNCF Incubating

Service Proxy

CNCF Incubating

API Gateway Service Mesh

CNCF Incubating

Ru
nt

im
e

Cloud-Native Storage

CNCF Incubating

Container Runtime

CNCF Incubating CNCF Incubating

Cloud-Native Network

CNCF Incubating

Pr
ov

is
io

ni
ng

Automation & Con�guration Container Registries

CNCF Sandbox

Security & Compliance

CNCF Incubating CNCF Incubating CNCF Sandbox

Key Management

CNCF Sandbox CNCF Sandbox

Cl
ou

d

Public

Platform
Certi�ed Kubernetes - Distribution

Certi�ed Kubernetes - Hosted

Certi�ed Kubernetes - Installer

Non-Certi�ed Kubernetes

PaaS/Container Service

Observability and Analysis
Monitoring

CNCF Graduated CNCF Sandbox CNCF Sandbox

Logging

CNCF Incubating

Tracing

CNCF Incubating CNCF Incubating

Chaos Engineering

Sp
ec

ia
l

Kubernetes Certi�ed Service Provider Kubernetes Training Partner

l.cncf.io

This landscape is intended as a map
through the previously uncharted
terrain of cloud native technologies.
There are many routes to deploying a
cloud native application, with CNCF
Projects representing a particularly
well-traveled path

Serverless

See the interactive landscape at l.cncf.io Greyed logos are not open sourceCloud Native Landscape
2018-09-28T19:04:23Z b7f0fad

Copyright © 2018 Didactic Security

Questions?

