Web Shell 101

Joe Schottman InfoSeCon 2018 Oct. 26, 2018

About Me

Senior Security Analyst for BB&T

AppSec
Incident Response
Vulnerability Management
Purple Team
Web App Developer
Sysadmin
DevOps

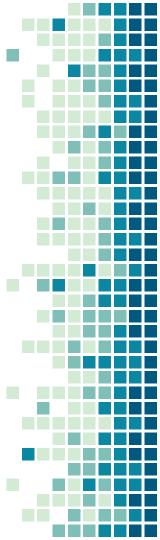
Legal Stuff

Not speaking on behalf of BB&T or any other employer or entity. All opinions expressed are my own.

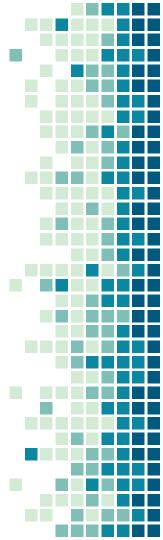
How To Reach Me

@JoeSchottman on Twitter

security@joeschottman.com www.joeschottman.com Add me on LinkedIn Find me on local Slacks



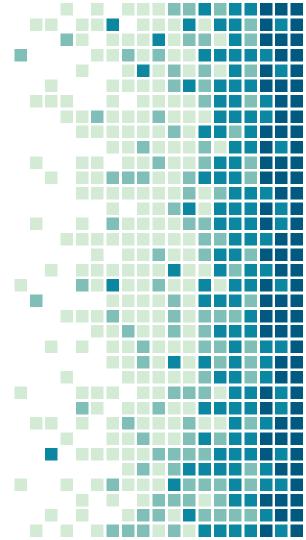
Agenda


What is a Web Shell?
How do Web Shells work?
How can you detect them?

Not going to cover how to use them

Definitions for this talk

Web Server == Application Server


If you're playing security conference bingo

You'll get at least three words in this talk.

First, a diversion

Let's start with a story

- 145.5 Million US citizens affected
- Unknown millions of international citizens
- PII including SSNs, drivers license numbers, credit card numbers

One of the biggest data breaches in history

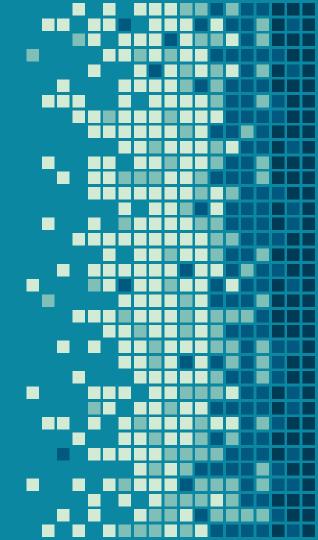
Initial attack vector believe to have been CVE-2017-5638.

"The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type header containing a #cmd= string."

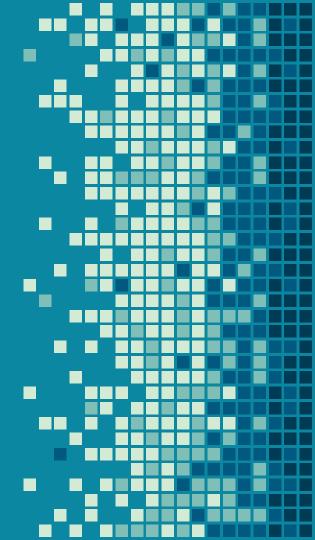
Initial attack vector believe to have been CVE-2017-5638.

"The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type header containing a #cmd= string."

Initial attack vector believe to have been CVE-2017-5638.


"The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type header containing a #cmd= string."

But that's a story for a different talk.


Once the hackers found the vulnerability Zheng reported, they installed a simple backdoor known as a web shell. It didn't matter if Equifax fixed the vulnerability after that. The hackers had an invisible portal into the company's network.

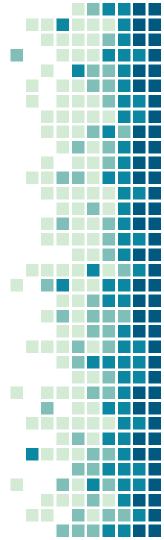
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros

Eventually the intruders installed more than 30 web shells, each on a different web address, so they could continue operating in case some were discovered.

https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros

What is a Web Shell?

A subset of malware that runs on web servers


Web Shells are someone else's code running on your web/application server for the purpose of:

Backdoors

Remote Access Tools (RATs)

Pivoting

Persistence

Used by APT groups

APT32 (suspected Vietnamese)

APT34 (suspected Iranian)

Deep Panda (suspected Chinese)

Dragonfly (unknown)

Oil Rig (suspected Iranian)

But also script kiddies

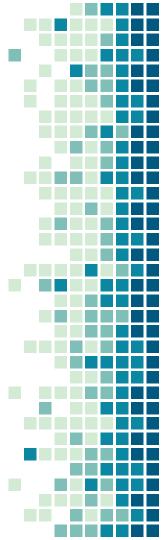
Web Shells do not require a high level of skill to install or use at the simplest level.

Many are freely available for download.

Easier to catch a script kiddie than an APT.

Someone else's code

Written in the languages that your web or application server supports. Some servers support more than one language.


- PHP
- Perl
- Python
- ASP

- JSP
- Ruby
- Shell Scripts

Mostly scripting languages

Most web shells use scripting languages because they're the easiest to simply drop and execute on servers.

But attackers can use WAR files and the like, it just raises the complexity of the attack.

Designed to control your server via HTTP

Remote command execution File access Query system information

Imagine an evil web application

Often uses programming language's built in functionality as much as possible for things such as file access.

When the language doesn't have support for functionality, will use command execution capability.

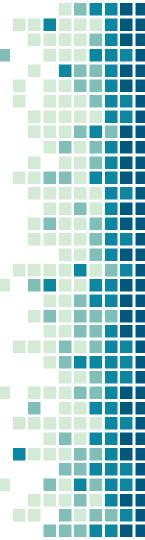
May install command shell utilities to do tasks.

Executes just like your web applications

Runs with the same permissions and limitations as your web server.

Some groups will use escalation tools in conjunction with Web Shells but unless the application server is modified, the Web Shell executes just like your code.

This is useful for hunting for them.


Unless the attacker takes steps to avoid it...

Files created by Web Shells will be owned by the application server

File creation/modification time will be accurate

Access to the Web Shell will appear in the application server logs

Child processes such as executing cmd.exe or bash will be owned by the application server process



Used for different purposes

Sometimes used overtly for ongoing command and control

Sometimes used to kick off a completely different channel

Sometimes not used at all as sleeper

Hidden in different ways

Sometimes masquerade as legitimate file.

Sometimes appear as a random executable file.

Sometimes inserted into legitimate files.

How do they get on systems?

File upload attacks

Remote inclusion attacks

Added post-exploitation of a web app vulnerability

Dropped on a server after internal exploitation

Web Shells are not the initial attack

If you find a Web Shell, it means you have at least two problems.

Why at least two problems?

- Initial vector
- The Web Shell you found
- There may be more Web Shells

As with the Equifax hack, it is very common to install multiple Web Shells to attempt to avoid evasion. If your server or environment they can exploit supports more than one language, they may leverage that to avoid detection.

Let's consider where in the attack Web Shells are used

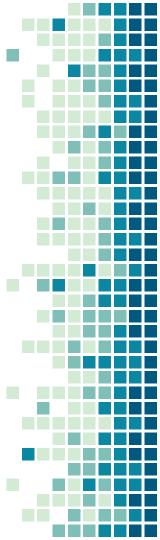
Two common frameworks for understanding the process followed by attackers:

- Cyber Kill Chain ® created by Lockheed Martin
- ATT&CK created by MITRE

Cyber Kill Chain

Reconnaissance

Weaponization


Delivery

Exploitation

Installation

Command and Control

Action on Objectives

ATT&CK

Initial access

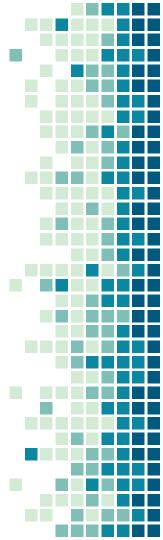
Execution

Persistence

Privilege escalation

Defense evasion

Credential access

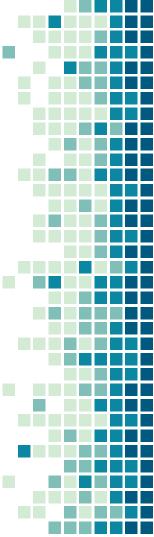

Discovery

Lateral movement

Collection

Exfiltration

Command and control



ATT&CK

ATT&CK Matrix for Enterprise

The full ATT&CK Matrix below includes techniques spanning Windows, Mac, and Linux platforms and can be used to navigate through the knowledge base.

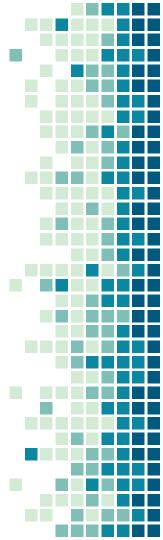
itial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Exfiltration	Command and Control
ive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token Manipulation	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Automated Exfiltration	Commonly Used Port
ploit Public-Facing oplication	CMSTP	Accessibility Features	Accessibility Features	BITS Jobs	Bash History	Application Window Discovery	Application Deployment Software	Automated Collection	Data Compressed	Communication Through Removable Media
rdware Additions	Command-Line Interface	AppCert DLLs	AppCert DLLs	Binary Padding	Brute Force	Browser Bookmark Discovery	Distributed Component Object Model	Clipboard Data	Data Encrypted	Connection Proxy
plication Through movable Media	Control Panel Items	Applnit DLLs	Applnit DLLs	Bypass User Account Control	Credential Dumping	File and Directory Discovery	Exploitation of Remote Services	Data Staged	Data Transfer Size Limits	Custom Command and Control Protocol
earphishing Attachment	Dynamic Data Exchange	Application Shimming	Application Shimming	CMSTP	Credentials in Files	Network Service Scanning	Logon Scripts	Data from Information Repositories	Exfitration Over Alternative Protocol	Custom Cryptographic Protocol
earphishing Link	Execution through API	Authentication Package	Bypass User Account Control	Clear Command History	Credentials in Registry	Network Share Discovery	Pass the Hash	Data from Local System	Exfitration Over Command and Control Channel	Data Encoding
earphishing via Service	Execution through Module Load	BITS Jobs	DLL Search Order Hjacking	Code Signing	Exploitation for Credential Access	Password Policy Discovery	Pass the Ticket	Data from Network Shared Drive	Extitration Over Other Network Medium	Data Obfuscation
pply Chain Compromise	Exploitation for Client Execution	Bootkit	Dylib Hijacking	Component Firmware	Forced Authentication	Peripheral Device Discovery	Remote Desktop Protocol	Data from Removable Media	Exfitration Over Physical Medium	Domain Fronting
usted Relationship	Graphical User Interface	Browser Extensions	Exploitation for Privilege Escalation	Component Object Model Hijacking	Hooking	Permission Groups Discovery	Remote File Copy	Email Collection	Scheduled Transfer	Fallback Channels
hid Accounts	InstallUtil	Change Default File Association	Extra Window Memory Injection	Control Panel Items	Input Capture	Process Discovery	Remote Services	Input Capture		Multi-Stage Channels
	LSASS Driver	Component Firmware	File System Permissions Weakness	DCShadow	Input Prompt	Query Registry	Replication Through Removable Media	Man in the Browser		Multi-hop Proxy
	Launchetl	Component Object Model Hijacking	Hooking	DLL Search Order Hijacking	Kerberoasting	Remote System Discovery	SSH Hijacking	Screen Capture		Multiband Communicati
	Local Job Scheduling	Create Account	Image File Execution Options Injection	DLL Side-Loading	Keychain	Security Software Discovery	Shared Webroot	Video Capture		Multilayer Encryption
	Mshta	DLL Search Order Hijacking	Launch Daemon	Deobfuscate/Decode Files or Information	LLMNR/NBT-NS Poisoning	System Information Discovery	Taint Shared Content			Port Knocking
	PowerShell	Dylib Hijacking	New Service	Disabling Security Tools	Network Sniffing	System Network Configuration Discovery	Third-party Software			Remote Access Tools
	Regsvcs/Regasm	External Remote Services	Path Interception	Exploitation for Defense Evasion	Password Filter DLL	System Network Connections Discovery	Windows Admin Shares			Remote File Copy
	Regsvr32	File System Permissions Weakness	Plist Modification	Extra Window Memory Injection	Private Keys	System Owner/User Discovery	Windows Remote Management			Standard Application La Protocol
	Rundl32	Hidden Files and Directories	Port Monitors	File Deletion	Securityd Memory	System Service Discovery				Standard Cryptographic Protocol
	Scheduled Task	Hooking	Process Injection	File System Logical Offsets	Two-Factor Authentication Interception	System Time Discovery				Standard Non-Applicat Layer Protocol
	Scripting	Hypervisor	SID-History Injection	Gatekeeper Bypass						Uncommonly Used Po
	Service Execution	Image File Execution Options	Scheduled Task	HISTCONTROL						Web Service

Time to engage incident response

If you find a Web Shell and your company has an IR team and policy, you need to engage them

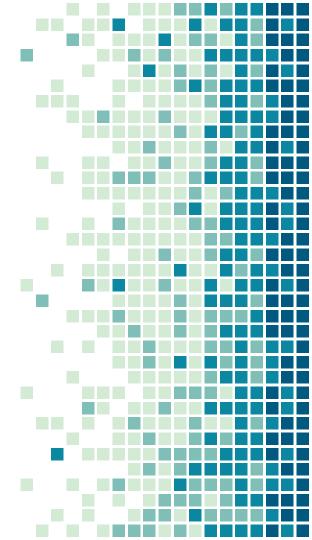
- It may be necessary to take steps to preserve forensic evidence
- There may be legal requirements to do so
- Cleanup requires finding the initial attack vector and closing it and finding and removal all web shells in your network

A funny aside This module exploits a lack of


This module exploits a lack of authentication in the shell developed by v0pCr3w and is widely reused in automated RFI payloads. This module takes advantage of the shell's various methods to execute commands.

-Metasploit v0pcr3w_exec module

Metasploit makes some Web Shells easy


apache_activemq_upload_jsp module Meterpreter via web_delivery

Detecting Web Shells

Strategies

Antivirus/Antimalware
File Integrity Monitoring
File System
Log Files
Network Traffic
Endpoint Anomaly Detection

Antivirus/Antimalware

AV can find some Web Shells.

Very often simple hash matching or looking for a few specific lines of an interpreted language.

Easy to fool by changing the code to get a different hash or change those key lines.

It's still better than nothing - if you find new examples of Web Shells and your AV doesn't flag them, submit sample to your provider.

Antivirus/Antimalware

AV will also complicate Web Shell research by deleting your samples.

This includes some cloud providers' storage.

If you're doing research on a corporate machine, make sure you have permission to do so, in case you light up the A/V dashboard.

You do get permission before doing research, right?

VirusTotal

Uploading a suspicious file to VirusTotal may tell you if multiple A/V vendors identify it as a Web Shell, but I don't necessarily recommend it.

Once you identify a suspicious file, it should be pretty easy to determine if it's malicious or not.

Attackers monitor VirusTotal to see if their tools have been found.

Uploading your company's IP to a third party is ... non-ideal.

File integrity monitoring

If you have a robust DevOps toolkit, it may be capable of detecting new or modified files it doesn't know about.

You may have a specific FIM tool installed that can do the same.


You can generate hashes of all files from a known clean install and look for changes.

In an ideal world...

Your application would not allow uploads. If you must allow them:

- restrict file types
- scan with A/V tool
- store uploaded files outside of the web root

Also in an ideal world...

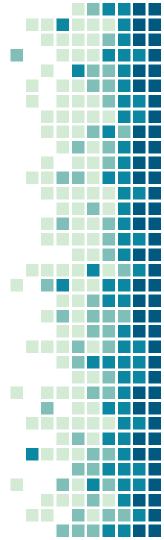
Your web root would be read-only.

It's hard to add files to something that's immutable.

Conduct tests - put new files on your web servers and see how long detection takes.

File system techniques

Search for hashes of known Web Shells.


Utilize endpoint security products, threat hunting tools, or shell scripts

Limited use if the attacker makes each Web Shell unique

Slide on YARA here

Add content if there's time after runthrough

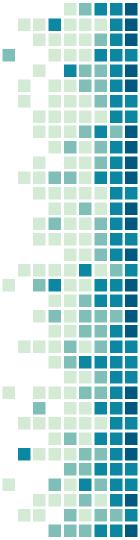
Dirty Word List

Dirty word list is a term from file IR.

Compile a list of suspicious words to look for in files such as exec() or shell_exec() in PHP.

Ideally be able to tell when a file has multiple suspicious words.

As you find new Web Shells, add distinctive things from them to dirty word list.



Look for encoded or encrypted content

Attackers often encode or encrypt the majority of the code to hide it from text string searches.

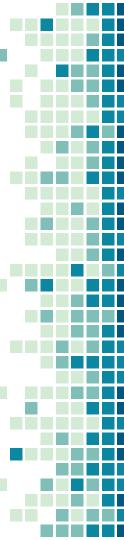
Look for unusual amounts of Base64 and other encodings in executable files.

Look for executable files with high amounts of entropy

Don't forget the database

Some Web Shells use the database to store large amounts of data or to hide executable code.

Look for new and unexpected databases or tables.



Log Files

Look for the appearance of a new URI that you've never seen before.

This may duplicate file system monitoring but is helpful if you don't have access to the file system and also is important with some web frameworks.

New GET variables can also be an indicator but are much harder to create rules for.

Log Files

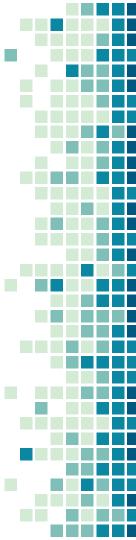
URIs that only a single (or handfull) of IPs access. Especially if they're international, VPN/proxy, or Tor IPs

Log Files

New 400 or 500 errors may be indicative of an uploaded webshell failing to work.

A 400 indicates they called it incorrectly.

A 500 indicates something went wrong on the server (e.g. the Web Shell uses a PHP function that you banned in php.ini)



Network analysis

A web server begins connecting to an unexpected external site.

A web server begins connecting to an unexpected *internal* site.

Web Application Firewalls (WAF) or IDS/IPS tools with network visibility will detect some Web Shells.

Endpoint anomaly detection

Usual child process for web server.

Very high CPU utilization for web server process or unusual run time.

THANKS!

Any questions?

You can find me at:

@JoeSchottman
security@joeschottman.com

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>

PRESENTATION DESIGN

This presentation uses the following typographies and colors:

Titles: Dosis

Body copy: Titillium Web

You can download the fonts on these pages:

http://www.impallari.com/dosis

http://www.campivisivi.net/titillium/

Pastel green #d3ebd5 · Green #80bfb7 · Teal #0b87a1 · Navy #01597f · Dark navy #003b55

You don't need to keep this slide in your presentation. It's only here to serve you as a design guide if you need to create new slides or download the fonts to edit the presentation in PowerPoint®

