
Get Rid of Passwords With
This One Weird Trick
An Introduction to Web Authentication

Nick Steele
Senior R&D Engineer Senior R&D Engineer

James Barclay

@futureimperfect@codekaiju

What are we talking about?
● Moving past passwords

● Why it’s important

● Passwordless Authentication on the Web

● How we’re doing it

Why are we talking about this?
● We’re Duo Labs

○ We’re the research group at Duo Security, now part of
Cisco

○ Strong authentication on the internet is a hard problem
○ We research hard problems!

● We believe that the WebAuthn spec is a good solution to
passwordless authentication

● Solving this problem helps
pretty much everyone

Democratization of Security Is Key
● A rising tide lifts all ships
● Solving big security issues together rather than apart

○ Strengthens our community
○ Keeps us honest

● Focus should always be on helping the most users
● Be like Tron

A Brief History

“In the beginning the password was created.
 This has made a lot of people very angry and
 been widely regarded as a bad move.”

- Douglas Adams, sorta

81% of breaches leverage
either stolen and/or weak
passwords.

Source: 2017 Verizon Data Breach Investigations Report

http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/

“Kind of a nightmare...”
 - The guy who invented it

“Passwords Suck”
 - Most People

“Passwords Suck”
 - Most People

MFA

Multi Factor Authentication
● Better than only first factor, but…

○ User experience can be cumbersome (except Duo :)

○ SMS OTP codes can be intercepted

○ HOTP and TOTP seeds can be intercepted

○ Not phish-proof

“Passwords Suck”
 - Most People

MFA

“Passwords Suck”
 - Most People

MFAU2F

Universal Second Factor
● Better than only first factor and traditional

MFA but…

○ Requires physical token (usually)

○ Tokens can be expensive ($19 and up)

○ Hard to use (if even possible) on mobile devices

○ Isn’t supported natively in most browsers

■ Not really universal…

○ Hard to convince people to use it casually

PASSWORDS

“Passwords Suck”
 - Most People

MFAU2F

“The average… user has over
107 accounts registered to one
email address… In 2020, the
average number of accounts per
internet user will be 207”

 - Dashlane, 2015

● Phones are becoming smarter

○ Most have a built-in security module, like a TEE or SEP

○ Biometric authentication is common on these devices

○ 77% of Americans own a smartphone in 2017 (68% in 2015)

● FIDO drafts Universal Authentication Factor spec

○ Spec describes a method for authenticating users via client devices to online

services using key pairs created by the client, (and authorized by the user via a

biometric or PIN)

○ Not a lot of traction, but paved the way for…

Meanwhile… in the year 2015

Web Authentication

Web Authentication

WebAuthn

WebAuthn
● A W3C spec started in 2016
● Includes contributors from Google, Mozilla, Microsoft…
● Currently supported in Chrome, Edge, and Firefox
● But what is it?

WebAuthn is…
“...an API enabling the creation and use of strong,
attested, scoped, public key-based credentials by
web applications, for the purpose of strongly
authenticating users.”

WebAuthn
“...[with WebAuthn] one or more public key
credentials, each scoped to a given Relying Party,
are created and stored on an authenticator by the
user agent in conjunction with the web application.”

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Strong Attested Scoped

Credentials

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Strong Attested Scoped

Credentials

p@ssw0rd

1. Passwords are pre-shared keys
2. Passwords are difficult to remember
3. Passwords can be stolen
4. Passwords can be (and are) re-used
5. Passwords are difficult to secure for developers

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Passwords Have Problems

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

WebAuthn Credentials Are Strong

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

● Unlike passwords or passphrases, WebAuthn uses public-key cryptography
rather than pre-shared keys

● With user verifying WebAuthn authenticators, signing operations are
authorized by the user via something they know (PIN), or something they are
(biometric)

● With non-user verifying WebAuthn authenticators, signing operations are
authorized by proof of user-presence

WebAuthn Credentials Are Strong

Attacker

Public Key

Private Key

Attacker

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Strong Attested Scoped

Credentials

Attestation is a way to cryptographically
prove that a key pair came from an
authenticator we trust.

🔖

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Strong Attested Scoped

Credentials

User Agent example.com

“Give me the credential for example.com.”

User Agent example.com

“I see you’re example.com, so here it is.”

User Agent evil.com

“Give me the credential for example.com”

User Agent evil.com

“I see you’re evil.com, so you can’t have that.”

Who Would Win?
A Password or One Credential Boi?

Credential Type Strong? Attested? Scoped?

Password Maybe No Maybe

WebAuthn Yes Yes Yes

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Relying Party
● AKA the website the user is authenticating to
● Credentials for the Relying Party are bound by origin (scoped)

○ Possible to use for subdomains (sub.example.com)when the credential is scoped to the
domain (example.com)

■ The reverse is not true

● Cannot talk directly to the authenticator or (by default) identify the authenticator
○ This prevents tracking of the user via the authenticator

● A breach of the Relying Party’s credential database would leak the credential
public key and credential ID, not the credential private key

● Capable of creating and storing and strong credentials

● Authenticators can require biometric or PIN to use the credential

● U2F tokens can also be used, like Yubikeys and Feitian keys

● These devices require interaction by the user

● Communicates to the the User Agent, using Client to Authenticator Protocol

● Can provide proof that it created the credential, via authenticator attestation

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Authenticators

Glossary

Credential Key Pair:
The private/public keys used for authenticating.

User Agent:
Software that acts on behalf of the user,
(browser).

Other WebAuthn Terminology

● Credential ID (Public Key ID)
○ Can also be wrapped private key

● WebAuthn Ceremonies (or Functions)
○ Registration
○ Assertion (Login)

● Authorization and Authentication
○ Authentication - Identifying the user
○ Authorization - Access rights of the user

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

WebAuthn
● Allows websites and users to have a unique credential between them

● The authenticator can be a biometric device, identifying the user

● The user must interact with their authenticator to release the credential

● The authenticator gives us proof that it created the credential

● Eliminates the need for user created passwords
● Raises the bar for security on the internet

○ The weakest WebAuthn credential is stronger than the stronger password
○ A credential cannot be easily phished from the user
○ A public key stolen from the Relying Party is ineffective

● Lowers the barrier to entry
○ Uses hardware commonly available to users (a smartphone or laptop)
○ Means users don’t need to buy any extra hardware

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Why Is WebAuthn Important?

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

QUICK DEMO HERE

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

FIDO2
● In March the FIDO Alliance introduced “The FIDO2 Framework”

○ WebAuthn + CTAP2 together

● FIDO2 covers the full spectrum
○ Client (User Agent) <--> Authenticator
○ Client (User Agent) <--> Relying Party

● Can be confusing, so when you hear FIDO2 just remember that it
encompasses WebAuthn as well

Authenticator User Agent Relying Party

WebAuthn

Authenticator User Agent Relying Party

CTAP

Authenticator User Agent Relying Party

CTAP WebAuthn

FIDO2

● WebAuthn uses native JavaScript code in the browser.
● The Relying Party gives the client JSON to be handled by

the Authenticator.
● The CTAP responses are returned using in CBOR

○ Concise Binary Object Representation (skinny JSON)
● Easy to request a credential, but validation is a bit tricky.
● Let’s look at creating a WebAuthn credential...

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

The Technical Bits

User Agent example.com

Creating a WebAuthn Credential

“Hi, I’d like to make an account for username@example.com”

User Agent example.com

 createRequest = {
 challenge: “kB_iazmlpT6vV3mGrukC_g”,
 // Relying Party
 rp: {
 name: "Example"
 },

 // User
 user: {
 id: the_user_id_as_buffer,
 name: "username@whatever.com",
 displayName: "User P. Name",
 icon: "https://pics.image.com/ava.png"
 },
 //
 pubKeyCredParams: [
 {
 alg: -7, //“ECDSA with SHA256”
 type: "public-key",
 }
],
 authenticatorSelection: {
 authenticatorAttachment:"cross-platform",
 requireResidentKey: false,
 userVerification: "preferred"
 },
 };

User Agent example.com

Creating a WebAuthn Credential

navigator.credentials.create({publicKey: createRequest})

Authenticator User Agent

“Create a credential with this request”

Creating a WebAuthn Credential

Authenticator returns:
● ID
● Attestation Object

○ Attestation Data
○ Auth Data

● Client Data
● Type

Create

 PublicKeyCredential {
 id: "Tlvza28kWwnjT60S52iB1qn6yMFfJ2KZ88E_4X3t6uf5452CZ6BeXLBK5qYpDKmQ..."
 rawId: ArrayBuffer(64) {}
 response: AuthenticatorAttestationResponse {

 attestationObject: ArrayBuffer(226) {}
 clientDataJSON: ArrayBuffer(102) {}

}
 type: "public-key"
 }

User Agent example.com

Creating a WebAuthn Credential

“Here’s what the authenticator said...”

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Attestation Data (abridged)
● Contains the Attestation Statement and Auth Data
● Attestation Statement

○ The private key signature over the client data
○ x509 certificate from the authenticator device

● Authenticator Data
○ Hash of the relying party ID (“example.com”)
○ Credential Public Key
○ Byte Flags with other info (user present, verified, etc)

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Verifying the Data
● Is the client data properly signed/hashed?
● Are the challenge and origin correct?
● Is the credential ID in use already?
● Is this a create request or a get request?
● Was the flag for user presence set to true?
● 19 verification steps in total...

example.com

Creating a WebAuthn Credential

Credential ID

Credential Public Key

User Agent example.com

Logging in with a WebAuthn Credential

“Hi, I’d like to login as username@example.com”

User Agent example.com

Logging in with a WebAuthn Credential

“Prove you own the credential for this Public Key”

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

What we did

github.com/duo-labs/py_webauthn

Authn

github.com/duo-labs/webauthn

Authn

webauthn.io

WebAuthn – Open-Source

Author GitHub Repository Language

Google google/webauthndemo Java

FIDO fido-alliance/webauthn-demo Node (JavaScript)

Duo Labs duo-labs/webauthn Go

Duo Labs (New!) duo-labs/PyWebAuthn Python

Mastercard Mastercard/fido2-rp-spring Java

https://github.com/google/webauthndemo
https://github.com/fido-alliance/webauthn-demo
https://github.com/duo-labs/webauthn
https://github.com/duo-labs/py_webauthn
https://github.com/Mastercard/fido2-rp-spring

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

What’s next?
● Native support of mobile cross-platform authenticators

○ i.e. Supporting Laptop to Mobile authentication
● More support of on-platform authenticators

○ Touch ID supported in Chrome only
○ Windows Hello supported in Edge

● More support for NFC and Bluetooth authenticators
● More details around how to handle account recovery

EXAMPLE SLIDE / DO NOT USE / DELETE BEFORE PRESENTING

Account Recovery
● FIDO has a working group discussing best practices
● Practices include…

○ Email based account recovery
○ Backup authenticators
○ Wrapping and storing key material

Current Implementation on Browsers

● Passwords have problems, but we don’t have to settle for them
● WebAuthn is a new standard for managing public-key credentials on the

web, for the purpose of strongly authenticating users.
● WebAuthn development still has some areas needing work, but you can

begin to implement it on your site today.
● Major platform, hardware, and software vendors are investing

resources into WebAuthn, so expect to hear more in the coming months
and years.

Takeaways

Questions?
@codekaiju && @futureimperfect

