Journey
Building an AppSec Program with a Budget

of $0: Beyond the OWASP Top 10

Chris Romeo, CEQ, Security Journey

Copyright © Security Journey, 2018

CEO / Co-Founder @ Security Journey

e 22 years in the security world, CISSP,
CSSLP

e Co-host of the

F\!Q APPLICATION SECURITY PODCAST

edgeroute
* Co-Lead of the OWASP Triangle , @edg
Chapter , @AppSecPodcast

. Security
R)

Copyright © Security Journey, 2018 Journey

1. Traditional application security programs
2. The importance of security community

3. Building a program based on OWASP
- Awareness and education
- Process and measurement

- Tools

4. Final thoughts
91 Security

Journey

People Process

. Security
R)

Journey

1. Limit vulnerabilities in deployed code

2. Build secure software and teach developers to
build secure software

3. Provide processes and tools for AppSec
standardization

4. Demonstrate software security maturity
through metrics and assessment

. Security
p)

Journey

Large budget Small budget

Goal: Educate about product security and
embed expertise within every product team.

. Security
R)

Journey

v e

T Flagship; |
Projects: 13

e .-

A4

. Incubator

s

-

AN . > AL g A) 5 .

S

Rating Explanation

0 The only way this goes away is if
owasp.org disappears off the Internet

1-3 Stable project, multiple releases, high
likelihood of sustainability

4-6 Newer project, fewer releases

7-9 Older project with a lack of updates within
the last year

10 If I added one of these to this project, |

should have my head examined

&y

Security
Journey

mNOTICE

Use OWASP projects with

caution. There is no
guarantee that a project
will ever be updated again.

Awareness,
knowledge,
education

\ \._‘ \\W x

T

Process and
measurement

&y

Security
Journey

OWASP
/ OWASP TOP 10 - 2017 Automated Threat Handbook

The Ten Most Critical Web Application Security Risks

A e 2
c'r.fmstejets1 " N WEBGOAT
OWASP e
Prog Active
\ CONTROLS /

91 Security

), Journey

OWASP Top 10 - 2017 Risk of using project
The Ten Most Critical Web Application Security Risks

A1:2017-Injection

A2:2017-Broken Authentication
A3:2017-Sensitive Data Exposure
A4:2017-XML External Entities (XXE)
A5:2017-Broken Access Control
A6:2017-Security Misconfiguration
A7:2017-Cross-Site Scripting (XSS)

A8:2017-Insecure Deserialization

A9:2017-Using Components with Known
Vulnerabilities

A10:2017-Insufficient Logging & Monitoring

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project ‘ Security
IWJourney

A Ctive Risk of using project

CONTROLS

C1 Define C2 Leverage C3 Secure C4 Encode and @l C5 Validate All
Security Security Database Escape Data Imputs
Requirements Frameworks Access
and Libraries

C6 Implement C7 Enforce C8 Protect C9 Implement gl C10 Handle All
Digital Identity gl Access Control Data Security Errors and
Everywhere Logging and Exceptions

Monitoring

https://www.owasp.org/index.php/OWASP_Proactive_Controls

. Security
p)

Journey

OWASP e

Pro ﬁActive

CONTROLS
OWASP Top 10 - 2017

Al1:201 7-Il’lj ection SN C1 Define Security Requirements

A2:2017-Broken Authenticatio

C2 Leverage Security Frameworks and Libraries

C3 Secure Database Access

C4 Encode and Escape Data

A3:2017-Sensitive Data Exposura
A4:2017-XML External Entities (XXE

C5 Validate All Imputs

N SR
A5:2017-Broken Access Contro ""

A6:2017-Security Misconfiguration =

C6 Implement Digital Identity
NI

C7 Enforce Access Control

A7:2017-Cross-Site Scripting (XSS)

. 1. . C8 Protect Data Eve here
A8:2017-Insecure Deserialization YW

C9 Implement Security Logging and Monitoring

A9:2017-Using Components with Known
Vulnerabilities C10 Handle All Errors and Exceptions

A10:2017-Insufficient Logging & Monitoring

. Security
R)

Journey

OWASP

Automated Threat Handbook Risk of using project

Account Account CAPTCHA : Card :
Aggregation Creation e defeat Levling Cracking Leilng Gt
Credential Credential Denial of Denial of Expeditin Fingerorintin Footorintin
Cracking Stuffing Inventory Service p 5 8erp & p 5
: : : .. : Token Vulnerability
Scalping Scraping Skewing Sniping Spamming Cracking Scanning

https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications

' Security
R)

Journey

OWASP Risk of using project

Cheat Sheets

¥-T-E Cheat Sheets [Caliapse]

3rd Party Javascript Management + Access Control + AJAX Security Cheat Sheet + Authentication (ES) -

Bean Validation Cheat Sheet - Choosing and Using Security Questions - Clickjacking Defense -

Credential Swffing Prevention Cheat Sheet - Cross-Site Request Forgery (CSRF) Prevention -

Cryptographic Storage - C-Based Toolchain Hardening - Deserialization - DOM based XSS Prevention -
Forgot Password - HTMLS Security - HTTP Strict Transpaort Security - Injection Prevention Cheat Shest -
Injection Prevention Cheat Sheet in Java - JSON Web Token (JWT) Cheat Sheet for Java -+ Input Validation -
Insecure Direct Object Reference Prevention - JAAS - Key Management - LDAP Injection Prevention -
Logging -+ Mass Assignment Cheat Sheet - .NET Security - OS5 Command Injection Defense Cheat Sheet -
OWASP Top Ten - Password Storage - Pinning + Query Parameterization - REST Security + Ruby on Rails -
Session Management - SAML Security -+ S0L Injection Prevention - Transaction Authorization

Transport Layer Protection - Unvalidated Redirects and Forwards - User Privacy Protection -

Web Service Security - X35 (Cross Site Scripting) Prevention - XML External Entity (XXE) Prevention Cheat Sheet

Developer / Builder

Attack Surface Analysis + REST Assessment - Web Application Security Testing + XML Security Cheat Sheet -+
XS5 Filter Evasion

Assessment / Breaker

Mobile Android Testing « 105 Developer - Mobile Jailoreaking
OpSec / Defender Virtual Patching - Vulnerability Disclosure

Application Security Architecture - Business Logic Security - Content Security Policy -
Draft and Beta Denial of Service Cheat Sheet - Grails Secure Code Review - 103 Application Security Testing « PHP Security -
Reqular Expression Security Cheatshest - Secure Coding - Secure SDLC - Threat Modeling

https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
. Security
), Journey

Security Knowledge Framework Knowledge Risk of using project

package com.edw;

import org.owasp.esapi.ESAPI;

' </> Code Language - R
| Securlty kl’lOWledge reference guag import org.jsoup.Jsoup

import org.jsoup.safety.Whitelist;

_ Code example class XssFilter {
PHP
- Knowledge Base
C#/.net
1J}\\/}\ String filter(String value) {
(value ==)
Py-Flask
F’)I'[)jiif1£i() value = ESAPI.encoder().canonicalize(value);
Py-Django

value = value.replaceAll("\o", "");

Ruby on Rails
Go

value = Jsoup.clean(value, Whitelist.none());

ENUTH

https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework

. Security
), Journey

2 WEBGOAT

L

* Java based * Collection of DevOps- * JavaScript based
* Version 8.0, long lasting driven applications, * Intentionally insecure web
* Includeslessons and specifically designed to app
hacks showcase security * Encompasses the entire
catastrophes OWASP Top Ten and other
* Microservices and severe security flaws
containerization

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Proje
https:/ /www.owasp.org/index.php/OWASP_DevSlop_Project

https://www.owasp.org/index.php/OWASP_Juice_Shop_Project 0 Security
B

Journey

Delivery of awareness
and education

Administration of the
training platforms

. Security
R)

Journey

Awareness

* Foundational
understanding of
the most important
concepts in AppSec

Knowledge

* A concise reference
for solving the most
difficult AppSec
problems

* Secure coding
examplesin
multiple languages

Hands-on trainingﬂ

* Assimilation of key
concepts through
activities that lock
in knowledge and
make it practical

. Security
R)

Journey

Awareness

Lunch and learn
sessions to teach the
basics of all awareness
documents

Knowledge

» Teach developers about
available cheat sheets

* Hostan internal copy of
the cheat sheets

* Lead a trainingsession
covering the three most
crucial cheat sheets for
your organization

Hands-on training

Build an environment
that hosts the different
training apps

Schedule a hack-a-thon
where teams gather
together and work on
the vulnerable apps in
teams and learn from
each other

. Security
R)

Journey

/Application Security Verification Standard OUJASP

Mobile Security Requirements
and Testing Guide

DU-'HSD ‘ Testing Guide

o JEFECT Jd0J0

CODE
REVIEW Application Threat Modeling

\ GUIDE

_/

. Security
R)

Journey

SAMM Overview
Software
Development

Business Functions

Construction Verification Operations

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Implementation Issue Operational
Compliance Assessment Architecture Review Management Enablement

m Implicit starting point representing the activities in the practice being unfulfilled

n Initial understanding and adhoc provision of security practice
httpS//WWWOwaSpOrg/lndexphp/OWAS P_SAM M_PI"OjeCt Increase efficiency and/or effectiveness of the security practice

Comprehensive mastery of the security practice at scale

l) |Journey

Application Security Verification Standard Lrocess Risk of using project

Requirement

V1. Architecture, design and
threat modelling

V2. Authentication

V3. Session management
V4. Access control

V5. Malicious input handling
V7. Cryptography at rest

V8. Error handling and
logging
V9. Data protection

V11. HTTP security
configuration P

V13. Malicious controls
V15. Business logic

V16. File and resources

V17. Mobile “'grlmomumsnc
V18. Web services |

V19. Configuration n

V11. HTTP security OWASP ASVS LEVELS
configuration

V10. Communications

Security

oW
https://www.owasp.org/index.php/Category:O WASP_Application_Security_Verification_Standard_Project ImJourney

Process

Risk of using project

Application Threat Modeling

1 What

2 Why

3 4 Questions
3.1 1. What are we building?
3.2 2. What can go wrong?

3.3 3. What are we going to do about that?

3.4 4. Did we do a good enough job?
4 Process

4.1 When to threat model
4.2 Threat modelling: engagement versus review

4.3 Validating assumptions
5 Leaming More

5.1 Agile approaches
5.2 Waterfall approaches

6 Additional/External references

Users

Librarians

User / Web Server
o _____,,,_-—-Boundary

Responses

CB“'E' / oafa
I
l
[

Web Pages /m
On Disk

Datbase
Files

\ Web Server /
Database Boundary

https://www.owasp.org/index.php/Application_Threat_Modeling

. Security
), Journey

CODE

REVIEW

GUIDE

Secure code review methodology

Technical reference for secure code review: OWASP Top 10

HTML5

Same origin policy ot 1

Reviewinglogging code

Error handling —~

Buffer overruns

Client side JavaScript

N . : nRY
Qlest NotificatioZe
SE.ClientId 2 |

Codereviewdo's and don'ts

FErFrEw

Code review checklist

Code crawling for (4ot |« &

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project o Security
Journey

cl JEFECT J040
Bodgeit

» One-stop source of truth for vuln findings.
* Open source vulnerability management tool that

i &

Wil Metrics ~ # Engagements 5] ~ # Findings 2] ~ & Endpoints B -

(»]
streamlines the testing process. .
. . . T . Bodgelt
» Goal: make OptlleIDg Vulnerablllty traCklng S0 :JEasy to install - just requires java and a serviet engine, e.g. Tomcat
. . @ « Self contained (no additional dependencies other than to 2 in the above line)
less painful and reduce the amount of time e e SR R B et s
security professionals spend logging . . Vorstesting
vulnerabilities.
o
» AppSec Programs, QA, Pen Testers . = 5
LOW INFORMATIOMNAL

* Imports for common vuln scanners.

* (Custom report generation.

Apache 2.0 | w1 | GDPR EU & EU Data Extra-Territorial Appli

* Metrics and dashboards.
* App & infrafindings supported.

TSN Security

https://www.owasp.org/index.php/OWASP_DefectDojo_Project f Journey

Knowledge Base

Risk of using project

Ope
Sar

&) OWASP ‘ Testing Guide

Information gathering

Configuration and deployment management testing

Identity management testing

Authentication testing

Authorization testing

Session management testing

Input validation testing

Testing for error handling

Testing for weak crypto

Business logic testing

Client side testing

https://www.owasp.org/index.php/OWASP_Testing_Project . Security
), Journey

‘ Testing Guide

How to Test
Black Box testing
A black-box test will include at least three phases:

[1] Detect input vectors. For each web page, the tester must de-
termine all the web application's user-defined variables and how
to input them. This indudes hidden or non-obvious inputs such
as HTTP parameters, POST data, hidden form field values, and
predefined radio or selection values. Typically in-browser HTML
editars or web proxies are used to view these hidden variables.
See the example below.

[2] Analyze each input vector to detect potential vulnerabilities.
To detect an XS5 wulnerability, the tester will typically use spe-
cially crafted input data with each input vector. Such input datais
typically harmiless, but trigger responses from the web browser
that manifests the vulnerability. Testing data can be generated by
using a web application fuzzer, an automated predefined list of
kniown attack strings, or manually.

Soeme example of such input data are the following:

<script>alert| 123}</script>

“=<script=alertidocument.cookie)</script=>

For a comprehensive list of potential test strings, see the ¥55 Fil-
ter Evasion Cheat Sheet.

[3] For each test input attempted in the previous phase, the tester
will analyze the result and determine if it represents a vulnera-
bility that has a realistic impact on the web application’s security.
This requires examining the resulting web page HTML and search-
ing for the test input. Once found, the tester identifies any special
characters that were not properly enceded, replaced, or filtered
out. The set of vulnerable unfiltered special characters will depend
on the context of that section of HTML.

Ideally all HTML special characters will be replaced with HTML en-
tities. The key HTML entities to identify are:

= |greater than)

< [less than)

& ([ampersand)

' lapostrophe or single quote)
" {[double gquote)

However, a full list of entities is defined by the HTML and XML
specifications. Wikipedia has a complete reference [1].

Within the context of an HTML action or JavaScript code, a dif-
ferent set of special characters will need to be escaped, encoded,
replaced, or filtered out. These characters include:

n (new line}

\r (carriage return)

% (apostrophe or single quote)
V' [double quote)

W\ [backslash)

W00 (unicode values)

For a more complete reference, see the Mozilla JavaScript guide.

[2]

Example 1
For example, consider a site that has a welcome netice * Welcome
%username? * and a download link.

[@ http:/ffexample comfindex phpPuser=MrSmith

We'come Mr Smith
Set terminal client |

| hitp:/fexample. comfteclient exe

The tester must suspect that every data entry point can result in
an X565 attack. To analyze it, the tester will play with the user vari-
able and try to trigger the vulnerability.

Let's try to click on the following link and see what happens:

http:fexarmple.com/index.php?user=<script=alert(123)</
script>

If no sanitizaticn is applied this will result in the following popup:

@ 123

. Security
), Journey

OWASP

Mobile Security Requirements
and Testing Guide

 Why mobile application
security?

 Differentattack surface
* Local storage
* Local authentication
* OSinteraction

* Differentvulnerabilities
* Reverse engineering
* Secret storage
* Fewerto NO XSS or

CSRF

Process

Risk of using project

@nu_lnsn Standard

‘ ; Mobile AppSec
Verification

lllllll
IIIIIIII

GGGGG

Mobile security testingguide ¢ Mobile Application Security

Maps directly to MASVS ;/elrificlatic;n _ i

Native Android and iOS evels o requirements
C e Baseline

applications * Defense-in-depth

Uses OWASP testing guide for e Advanced

server side * Fork of ASVS dedicated to

mobile ﬂ
. Security
), Journey

End-to end SDL or Secure SDLC

Program metrics

Deployment advice/experience on
how to be successful

. Security
p)

Journey

Process

ASVS provides important requirements
App threat modeling defines the process
with examples

Code review guide describes how to
perform a code review and what to look for
Testing guide provides how to testand a
knowledge base of how to exploit
vulnerabilities

Measurement

* Aroadmap to where you are today, and
a plan for where you want to go with

your AppSec program

+.5

&y

Security
Journey

| Process |

* Choose one of the process areasto
start with (threat modeling) and
build out this activity as your first

* Early wins are key

| Measurement

Perform an early assessmentto
determine where you are

Map out a future plan for where
you want to get to

Share these assessments with
Executives and Security
Champions (and anyone else that
will listen)

Advocate for Executive support
on your plan to build a stronger
AppSec program

. Security
R)

Journey

OWASP \
ModSecurity / ~
Core Rule Set

THE 1°" LINE OF DEFENSE , DEPENDENCY CHECK

\ DEPENDENCY-TRACK

_/

§1 Security

), Journey

Risk of using project

Logged in as edgeroute (wp e O @

Threat Dragon
G Properties

Edit diagram Main Request Data Flow
X @ @ @
Browser
Out of scope
Browser Reason for out of scope
e
Web Request
Put Message (
Y
- -~ “

Store
-~ ST =- S Message
~ e
h \
7/

7

Message Queue
Reason for out of

sCope

-
-
- -

Provides
authentication

/
Actor Web Re?f)onse
/
! ’ Back d
groun
! App\ﬁceabti on Worker Process
Data Flow
,_——Y 2 - ~
o ~
,,’ R - \\ k\\
/ 7 WebA ue N
. Read web app config /2 Re?sﬂlg Y)y |
Trust ! 4 i Read worker confi
Boundary i ,f Querles Worker Query l%eSults : 9
~] [
S | / 'Worker Queries /
.= ‘]
1
" 1
Edit threats > Web Application Config Database I Worker Config
B o .
o A
S&IN| Security

Journey

https://www.owasp.org/index.php/OWASP_Threat_Dragon

WebRerver

Legitimate[?
g requests
.
-

Apache/NGINXRA [

ModSecurity
WebBrulnerabilities

Coreule
Set

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project ‘ Security
IﬂJourney

Infrastructure Risk of using project

</>

DEPENDENCY- Vulnerabilities? .
]ava »
IJ NET g Q E C) b |
| _MEradie
Anal -_—— = -
I"I‘dQ Ruby I nalyzer Dependency List of Vulns 4‘& |

I /I"““HK
l <«
I

PPPPPPPPP

Language

https://www.owasp.org/index.php/OWASP_Dependency_Check

. Security
R)

Journey

Supported Bill-of-Material Formats

Supported Notification Platforms

{9 CycloneDX \& slack
E SPDX ii Microsoft Teams
\ _)\ DEPENDENCY-CHECK & webhooks
~
D DEPENDENCY-TRACK
Vulnerability Intelligence v API Integration \
NVvD TNam ~ 474 OPENAPI
‘/\ DB \ D DEPENDENCY-TRACK <> | | Infrastructure
Sonatype | @ Jenkins

0SS Tndex

Supported Repositories

@ RubyGems

Maven
npm

A

Vulnerability Aggregation

—

Thread F|x

Risk of using project 4

. Security

Source: https://docs.dependencytrack.org/integrations/ecosystem/) Journey

Infrastructure Risk of using project

Browser WebEpp

HHQHE
O

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project ‘ Security
IWJourney

Do Do

No options for SAST or IAST

A dashboard to track everything
(requirements management,
activities, releases, metrics)

. Security
p)

Journey

| Design |

* Threat dragon provides a new, web
based approach to capturing
threats that will reach Enterprise
status if it delivers on the roadmap

| Infrastructure |

CRS provides a true WAF solution
Dependency check identifies
vulnerable 37 party software
Dependency track provides
Enterprise 3rd party software
tracking

ZAP provides DAST, and plugs in to
any dev methodology

R Securit
s

Design Infrastructure

* Use threat dragon as the tool to * Add Dependency Check to your
teach threat modeling and scale it build pipeline tomorrow
across your developmentteams * Teach ZAP to Security Champions
* Partner with application threat and interested testers
modeling knowledge * Work with your infra owner to
deploy a test of ModSecurity +
CRS

. Security
R)

Journey

S
N "
\N x\‘ y

- %
Awareness and Process and
: Tools
education measurement
I Awareness I I Knowledge I I Design I
I Knowledge I I Hands-on training I I Infrastructure I

I Hands-on training I

15 -

Tools

Process@nd
measurement

Awareness@
and@ducation

»

%

I Design I D DEPENDENCY-CHECK D DEPENDENCY-TRACK
| Infrastructure | (\ Modsecurity G
&oriBuIiSet b- H: >
> >
(- Application Security Verification Standard _'l: g
I Process I Application Threat Modeling —t
| Measurement | CODE :s E
RSP ‘ Testing Guide RCELYI%\E“)
\ O E
q AWareness I OWASP Top 10 - 2017 @ @ P O
The Ten Most Critical Web Application Security Risks / .
OWASP e U
oovteiz | s
I Hands-onfraining I U'JHSU
\ Cheat Sheets \)
. Security
IﬂJourney

OWASP Top 10 - 2017

A Security Knowledge Framework
The Ten Most Critical Web Application Security Risks

OWASP OWASF -
Automated Threat Handbook PI'O Ctlve
CONTROLS
o r
@ owasn
N Cheat Sheets

SDL phase view g

Application Security Verification Standard

Response

OWARSP
ModSecurity
Core Rule Set

‘ ' THE 1 UNE OF DEFENSE

~
"D DEPENDENCY-CHECK \

Y A
‘BD DEPENDENCY-TRACK

Application Threat Modeling

. Use Open SAMM to assess current program and future goals.
. There is no OWASP SDL; build /tailor required.

. Start small; choose one item for awareness and education to
launch your program.

. Build security community early; it is the support structure.

. Evaluate available projects in each category and build a 1-2 year
plan to roll each effort out.

. While OWASP is free, head count is not; plan for head count to
support your “free” program.

. Security
R)

Journey

Chris Romeo, CEO / Co-Founder

chris_romeo@securityjourney.com

www.securityjourney.com

@edgeroute, @Security]journey,
@AppSecPodcast

. Security
p)

Copyright © Security Journey, 2018 Journey

http://www.securityjourney.com/

